ERNST OTTO FISCHER und Siegfried Schreiner

Über Aromatenkomplexe von Metallen, XXVII 1)

Dipolmomente von Aromaten-Metall-Komplexen

Aus dem Anorganisch-Chemischen Institut der Universität München (Eingegangen am 18. Dezember 1958)

In Benzol-Lösung bei 25° durchgeführte Dipolmessungen an ungeladenen Metall-di-cyclopentadienylen vom Typ Me(C₅H₅)₂ erbrachten für die Übergangselemente Co, Ni, Ru, Os, Cr und V wie auch für das Hauptgruppenelement Mg in guter Übereinstimmung das elektrische Moment 0 D. Demgegenüber fanden sich für Be, Sn und Pb sowie das Tri-cyclopentadienyl von Bi endliche Momente. — Di-indenyl-eisen $Fe(C_9H_7)_2$ zeigt entgegen dem kristallographischen Befund in Lösung kein Dipolmoment, so daß trans-Stellung der anellierten Sechsringe anzunehmen ist. - Bei gemischten Metallcyclopentadienylen wurde für (C5H5NiCO)2, (C5H5)3Ni3(CO)2 und C5H5CrC6H6 gleichfalls das Dipolmoment zu 0 D gefunden, während (C₅H₅)₂ReH, (C₅H₅)₂ReH(CO)₂ und C₅H₅VOCl₂ erwartungsgemäß ein solches aufweisen. – Bei den ungeladenen Di-Sechsringaromaten-Metall-Komplexen vom Typ des $Cr(C_6H_6)_2$ zeigen das Toluol- sowie die drei Xylolanaloga gleichfalls das Dipolmoment 0 D, so daß eine trans-Stellung der Substituenten vorliegen dürfte. -In der Reihe der Sechsringaromaten-chrom-tricarbonyle vom Typ ArMe(CO)3 besitzt C₆H₆Cr(CO)₃ ein starkes Moment, welches durch den Ring negativierende Substituenten wie $-CH_3$, $-NH_2$, -OH, $-OCH_3$ oder einen anellierten Benzolring weiter vergrößert, durch positivierende wie -F oder -CO₂CH₃ hingegen verringert wird. Dies entspricht einer Polarisierung der π -Bindungen im Sinne Ring $(\delta+) \to Me^{(\delta-)}$.

I. Di-cyclopentadienyl-Metall-Komplexe Komplexe mit Co, Ni, Ru, Os, Cr, V

Röntgenographische Untersuchungen hatten bald nach der Entdeckung des Ferrocens eine pentagonal antiprismatische Molekelgestalt im Kristall bewiesen²⁻⁵⁾. Messungen in Benzol bestätigten das Vorliegen des Dipolmomentes 0 D^{6,7)}.

Auch für die ungeladenen Übergangsmetall-di-cyclopentadienyle des Co⁵⁾, Ni ^{5,8)}, Cr⁹⁾ und V¹⁰⁾ ließ sich der entsprechende ferrocenanaloge Molekelbau röntgenogra-

¹⁾ XXVI. Mitteil.: H. P. FRITZ, Chem. Ber. 92, 780 [1959].

²⁾ E. O. FISCHER und W. PFAB, Z. Naturforsch. 7b, 377 [1952].

³⁾ P. F. EILAND und R. PEPINSKY, J. Amer. chem. Soc. 74, 4971 [1952].

⁴⁾ J. D. DUNITZ und L. E. ORGEL, Nature [London] 171, 121 [1953].

⁵⁾ W. PFAB und E. O. FISCHER, Z. anorg. allg. Chem. 274, 316 [1953].

⁶⁾ G. WILKINSON, M. ROSENBLUM, M. C. WHITING und R. B. WOODWARD, J. Amer. chem. Soc. 74, 2125 [1952].

⁷⁾ E. Weiss, Z. anorg. allg. Chem. 287, 236 [1956].

⁸⁾ J. D. DUNITZ und L. E. ORGEL, J. chem. Physics 23, 954 [1955].

⁹⁾ E. Weiss und E. O. Fischer, Z. anorg. allg. Chem. 284, 69 [1956].

¹⁰⁾ E. Weiss und E. O. Fischer, Z. anorg. allg. Chem. 278, 219 [1955].

phisch sichern, während Ru¹¹⁾ und Os¹²⁾ in leichter Abweichung im Gitter pentagonal prismatische Doppelkegelstrukturen zeigen.

Da es denkbar erschien, daß Lösungsmittel mit Donoreigenschaften wie etwa Benzol oder auch Dioxan, insbesondere bei Metall-di-cyclopentadienylen mit nicht aufgefüllter Edelgasschale, zur Aufhebung der strengen Parallelstellung der Ringe infolge Miteingreifens in die Bindung zum Metall führen könnten $^{13)}$, wurden die Dipolmomente der Verbindungen in Benzol gemessen. Dabei fand sich übereinstimmend dasselbe zu 0 D. Für die Atompolarisation mußte wie bei $Fe(C_5H_5)_2$ der Betrag von 2-6% der jeweiligen Elektronenpolarisation angesetzt werden. Eine Ausnahme stellt lediglich $Cr(C_5H_5)_2$ dar, bei dem erst 15% der Elektronenpolarisation als Atompolarisation ein Dipolmoment von 0 D ergeben. Es scheinen auch sonst gesonderte Verhältnisse bei dieser Verbindung vorzuliegen, welche zur Zeit näher untersucht werden.

Komplexe mit Be, Mg, Sn, Pb

Von diesen vier Di-cyclopentadienylen von Hauptgruppenelementen ist bisher nur die Magnesiumverbindung röntgenographisch untersucht worden. Es ließ sich hierfür gleichfalls die pentagonal antiprismatische Molekelgestalt des Fe(C₅H₅)₂ ableiten ¹⁰⁾. Das in Benzol zu 0 D gefundene Dipolmoment steht damit im Einklang. Allerdings muß dabei für die Atompolarisation der ungewöhnlich hohe Betrag von 31 % der Elektronenpolarisation angesetzt werden. Es liegt uns die Vorstellung nahe, daß hier eine noch ziemlich schwache kovalente d²sp³-Hybridbindung der rein ionogenen elektrostatischen Beziehung zwischen Metall und Ringen überlagert ist, welche gleichwohl auch ihrerseits zur Parallelstellung der Ringe und Ausbildung der ferrocenanalogen Molekelgestalt beiträgt. Benzol als Donorsolvens könnte dabei eine Labilisierung derselben verursachen. Vergleichsmessungen in Cyclohexan ließen sich wegen zu geringer Löslichkeit nicht durchführen.

Für eine solche Bindungsauffassung spricht vor allem auch das überraschende Ergebnis an Be(C_5H_5)₂ als an sich homologer Verbindung. Es wurde ein Dipolmoment von $\mu_{15\%}=2.46\pm0.06$ D in Benzol ermittelt. Auch die Vergleichsmessung in Cyclohexan, welches keinerlei Donorfunktionen mehr ausüben kann, ergab mit 2.24 ± 0.09 D eine eindeutige, starke Unsymmetrie der Molekel. Sie scheint entsprechend dem IR-Spektrum durch einen über alle π -Elektronen gebundenen, aromatisierten und einen zweiten in herkömmlicher Weise σ -gebundenen Ring, der nun Dienstruktur aufweist, bedingt. Vermutlich führt das Fehlen besetzbarer d-Zustände bei Be zu einer solchen von Mg(C_5H_5)₂ abweichenden Molekelgestalt.

Ganz anders geartet scheinen die Bindungsverhältnisse in $Sn(C_5H_5)_2$ und $Pb(C_5H_5)_2$ zu sein. Die schon früher in Benzol gemessenen Dipolmomente von 1.02 ± 0.06 D⁷⁾ bzw. 1.63 ± 0.06 D⁷⁾ fanden sich in Cyclohexan mit 0.96 ± 0.10 D bzw. 1.29 ± 0.04 D erneut gut bestätigt. Die großen Ähnlichkeiten der IR-Spektren beider Ver-

¹¹⁾ G. L. HARDGROVE und D. H. TEMPLETON, U. C. R. L. Reports of the University of Berkeley 8141 [1957].

¹²⁾ H. GRUBERT, Dissertat. Techn. Hochschule München 1958.

¹³⁾ Vgl. hierzu z. B. die Ergebnisse an Zn(C₂H₅)₂ in Benzol und Dioxan gegenüber Heptan von W. Strohmeier und K. Nützel, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 59, 538 [1955].

bindungen mit solchen von ferrocenanaloger Molekelgestalt wie etwa $Ni(C_5H_5)_2$ sprechen dafür, daß hier beide Ringe noch "sandwich"-artig mit dem Metall verbunden, jedoch zugleich etwas zueinander geneigt sind.

II. Tri-cyclopentadienyl-wismut

Das schwarze, hydrolysen- und sauerstoffempfindliche Tri-cyclopentadienyl-wismut Bi(C_5H_5)₃ zeigt sich in keiner Weise der farblosen, sehr beständigen Triphenylverbindung Bi(C_6H_5)₃ ähnlich. Das Dipolmoment der Phenylverbindung steht mit 0 D ¹⁴) im Gegensatz zu dem eindeutig festgestellten Moment von $\mu_{15\%}=1.13\pm0.19\,D^{15}$) der Cyclopentadienylverbindung. Auch hier ist wie bei den vorerwähnten Zinn- und Bleianalogen auf Grund des IR-Spektrums eine zentrische Bindung der Ringe an das Metall zu diskutieren.

III. Gemischte Metall-Cyclopentadienyle mit H, CO, O, Cl und C₆H₆

Di-cyclopentadienyl-rhenium-hydrid und Di-cyclopentadienyl-rhenium-di-carbonyl-hydrid

Das von G. Wilkinson und I. M. Birmingham¹⁶⁾ aufgefundene Di-cyclopentadienyl-rhenium-hydrid $(C_5H_5)_2$ ReH, zu dem ein interessanter Strukturvorschlag von A. D. Liehr¹⁷⁾ vorliegt, weist ein elektrisches Moment von $\mu_{15\%}=1.17\pm0.24$ D auf. Beide Ringe sind ferrocenartig an das nach unserer Auffassung edelgaskonfigurierte Rhenium gebunden, im π -Elektronenkegel des einen der Ringe ist das an das Metall gebundene Wasserstoffatom¹⁷⁾ anzunehmen. Das durch Druckbehandlung mit CO aus der Verbindung erhältliche Di-cyclopentadienyl-rhenium-di-carbonyl-hydrid $(C_5H_5)_2$ ReH $(CO)_2$ ¹⁸⁾ weist demgegenüber ein wesentlich stärkeres Moment von $\mu_{15\%}=3.85\pm0.09$ D auf. Die unter Beibehaltung der Edelgaskonfiguration dafür von uns vorgeschlagene Struktur mit einem nun zur σ -Bindung aufgerichteten Fünfring mit Dienstruktur erscheint damit gut verträglich.

Bis-[cyclopentadienyl-nickel-carbonyl]

Im Gegensatz zu den schon früher untersuchten monomeren Cyclopentadienylmetall-carbonylen des V, Mn und Co¹⁹⁾ ist die entsprechende Verbindung des Ni, (C₅H₅NiCO)₂²⁰⁾, dimer und dipollos. Dies spricht zugleich mit dem Diamagnetismus und den im IR-Spektrum auftretenden starken CO-Valenzschwingungen für die vorgeschlagene symmetrische Molekelgestalt mit einer Metall-Metall-Bindung und doppeltem Brücken-CO.

Tri-cyclopentadienyl-tri-nickel-di-carbonyl

Besonders interessante Verhältnisse liegen bei dem aus obiger Verbindung sich ableitenden Tri-cyclopentadienyl-tri-nickel-di-carbonyl (C₅H₅)₃Ni₃(CO)₂²⁰⁾ vor. Die Verbindung weist ein unpaares Elektron auf. Wir nehmen bei ihr die Ausbildung eines

¹⁴⁾ E. BERGMANN und W. SCHÜTZ, Z. physik. Chem., Abt. B 19, 401 [1932].

¹⁵⁾ E. Weiss, unveröffentlichte Untersuchungen.

¹⁶⁾ J. Amer. chem. Soc. 77, 3421 [1955]. ¹⁷⁾ Naturwissenschaften 44, 61 [1957].

¹⁸⁾ E. O. FISCHER und A. WIRZMÜLLER, Z. Naturforsch. 12b, 737 [1957].

¹⁹⁾ E. Weiss, Z. anorg. allg. Chem. 287, 223 [1956].

²⁰⁾ E. O. FISCHER und C. PALM, Chem. Ber. 91, 1725 [1958].

Nickel-Dreiringes an, bei dem an jedem Metall ein Fünfring ferrocenanalog gebunden ist. Die Zusammensetzung des Komplexes und das experimentell trotz der geringen Löslichkeit noch mit leidlicher Genauigkeit feststellbare Dipolmoment in Benzol zu 0 D machen eine zentrische Position der beiden wohl nach oben und unten senkrecht im Metall-Dreiring stehenden CO-Liganden wahrscheinlich.

Cyclopentadienyl-vanadin-oxy-di-chlorid

In dem aus $C_5H_5V(CO)_4$ durch Behandlung mit HCl zugänglichen Cyclopentadienyl-vanadin-oxy-di-chlorid $C_5H_5VOCl_2^{21)}$ sind die vier CO-Liganden durch zwei Chloratome und ein Sauerstoffatom ersetzt. Die stark negativen Gruppen führen entsprechend ihrer Gegenposition zum Ring zu einem elektrischen Moment von 4.93 \pm 0.09 D.

Cyclopentadienyl-chrom-benzol

Eine besonders interessante Problemstellung bietet sich an Cyclopentadienyl-chrombenzol $C_5H_5CrC_6H_6^{22}$. Trotz der Verschiedenheit der beiden Ringe zeigt die Verbindung, welche als echter Durchdringungskomplex aufzufassen ist und ein unpaares Elektron aufweist, das Dipolmoment 0 D. Es scheint demnach eine innere Symmetrisierung der Metall-Ring-Bindungen bis zum idealen gegenseitigen Ladungsausgleich beider Ringe gegenüber dem die π -Elektronen aufnehmenden Metall einzutreten.

IV. Di-indenyl-eisen

Röntgenographische Untersuchungen an kristallinem Di-indenyl-eisen stellten eine unsymmetrische "cis"-artige Anordnung der beiden Indenylreste am Metall sicher $^{23)}$. Demgegenüber fanden wir in Benzol-Lösung für Fe(C9H7)2 ein Dipolmoment von $\mu_{5,4\%}=0\pm0.27$ D. Die auch schon früher an dem analogen Di-indenyl-ruthenium Ru(C9H7)2 festgestellte Dipollosigkeit $^{7)}$ im selben Medium beweist trans-Stellung der anellierten Sechsringe, so daß eine weitgehend freie Drehbarkeit der Aromatenliganden um die die Bindung zum Metall tragenden Fünfringe zumindest in Lösung zu folgern ist.

V. Ar₂Me-Komplexe vom Typ des Di-benzol-chroms(0)

Die Di-Aromaten-Komplexe des Chroms mit Benzol, Toluol und den drei Xylolen²⁴⁾ entsprechen mit Dipolmomenten von $\mu_{5-13\%} = 0 \pm (0.35-0.48)$ D einem hochsymmetrischen, vermutlich hexagonal prismatischen Aufbau, wie er am $Cr(C_6H_6)_2$ röntgenographisch festgestellt wurde. Die elektrischen Momente der Toluol- und Xylolverbindungen weisen wie das Di-indenyl-eisen und Di-indenyl-ruthenium in Lösung nach diesem Ergebnis auf eine *trans-*Stellung der Substituenten hin.

VI. ArMe(CO)₃-Komplexe vom Typ des C₆H₆Cr(CO)₃

Die Bindungsverhältnisse in $Cr(C_6H_6)_2$ lassen mit dem Übergreifen der 6π -Elektronen vom Ring auf das Metall(0) eine negative Aufladung desselben und eine dementsprechende gewisse Positivierung der Ringe erwarten. Infolge der inneren Kompen-

²¹⁾ E. O. FISCHER und S. VIGOUREUX, Chem. Ber. 91, 1342 [1958].

²²⁾ E. O. Fischer und H. P. Kögler, Z. Naturforsch. 13b, 197 [1957].

²³⁾ J. TROTTER, Acta crystallogr. [Copenhagen] 11, 355 [1958].

²⁴⁾ Unveröffentl. Untersuchungen mit D. Seus und H. Essler.

sation, die durch die Molekelgestalt bedingt ist, tritt jedoch bei $Cr(C_6H_6)_2$ kein äußeres Moment in Erscheinung. Ersetzt man nun einen der beiden Ringe durch 3 CO-Liganden, so tritt im $C_6H_6Cr(CO)_3$ das Moment Ring \rightarrow Metall sofort klar zutage. Die CO-Liganden ihrerseits haben, wie schon frühere Messungen an $C_5H_5V(CO)_4$, $C_5H_5Mn(CO)_3$ und $C_5H_5Co(CO)_2$ bewiesen 19, nur ein verhältnismäßig sehr schwaches Moment von etwa 0.8 D zur Folge.

Man findet an $C_6H_6Cr(CO)_3$ in Benzol mit 4.92 ± 0.05 D gegenüber $C_5H_5Mn(CO)_3$ mit 3.30 ± 0.05 D¹⁹⁾ überraschend ein wesentlich stärkeres Moment. Es zeigt in Cyclohexan eine durch die Erfahrung schon früher oft bestätigt gefundene, geringfügige Abnahme bis auf 4.31 D. Charakteristische Einblicke in die Polarisierung Sechsring \rightarrow Metall erhält man, wenn man die Dipolmomente einer größeren Anzahl von substituierten Benzol-chrom-tricarbonyl-Derivaten mit $C_6H_6Cr(CO)_3$ selbst vergleicht. Tab. 1 faßt die Ergebnisse zusammen.

Aromat	Verbindung	Dipolmoment	Solvens
Benzol	C ₆ H ₆ Cr(CO) ₃	4.92 ± 0.05	Benzol
Benzol	$C_6H_6Cr(CO)_3$	4.31	Cyclohexan
Toluol	CH ₃ C ₆ H ₅ Cr(CO) ₃	5.20 ± 0.04	Benzol
o-Xylol	$(CH_3)_2C_6H_4Cr(CO)_3$	5.41 ± 0.05	Benzoi
m-Xylol	(CH3)2C6H4Cr(CO)3	5.37 ± 0.02	Benzol
p-Xylol	(CH3)2C6H4Cr(CO)3	5.39 ± 0.05	Benzol
Mesitylen	(CH3)3C6H3Cr(CO)3	5.56 ± 0.06	Benzol
Hexamethylbenzol	$(CH_3)_6C_6Cr(CO)_3$	6.22 ± 0.02	Benzol
Naphthalin	$C_{10}H_8Cr(CO)_3$	6.33 ± 0.03	Benzol
Phenol	HOC ₆ H ₅ Cr(CO) ₃	5.13 ± 0.07	Benzol
Anisol	H ₃ COC ₆ H ₅ Cr(CO) ₃	5.26 ± 0.03	Benzol
Anilin	H ₂ NC ₆ H ₅ Cr(CO) ₃	5.40 ± 0.05	Benzol
Fluorbenzol	FC ₆ H ₅ Cr(CO) ₃	4.75 ± 0.03	Benzol
Benzoesäure- methylester	CH ₃ O ₂ CC ₆ H ₅ Cr(CO) ₃	4.47 ± 0.03	Benzol

Tab. 1. Dipolmessungen an Sechsringaromaten-chrom-tricarbonylen

Man erkennt zunächst, daß eine steigende Anzahl von Methylgruppen zu einer steten Vergrößerung des Dipolmomentes gegenüber $C_6H_6Cr(CO)_3$ selbst führt. Es ist nun seit langem bekannt, daß der Methylrest als den Ring negativierender Substituent l. Ordnung wirkt. Anschaulich bedeutet dies, daß die π -Elektronen vermehrt reaktionsfähig werden, so daß o- und p-Substitutionen bevorzugt ablaufen. Im Falle der vorliegenden Komplexe drängt sich daher der Schluß auf, daß solche "verstärkte" π -Elektronen erwartungsgemäß auch eine festere π -Komplexbildung eingehen und dementsprechend tiefer in die Metallschale eingreifen. Es resultiert dabei folgerichtig eine Vergrößerung der Polarität Ring $^{(\delta+)} \to \text{Metall}^{(\delta-)}$. Der anellierte Benzolring schließt sich im Naphthalinderivat diesem Verhalten an.

Die an den Methylderivaten gewonnene Vorstellung, daß die negativierende Wirkung von Substituenten zur Verstärkung der π -Bindung Ring-Metall führt, bestätigte sich auch an den Substitutionsprodukten mit Anisol, Phenol und Anilin. In allen drei Fällen tritt eine erhebliche Zunahme des Momentes auf. Im Gegenbeweis mußte dann bei positivierenden Substituenten 2. Ordnung, wie Fluor und der Methyl-

estergruppe, eine Verringerung zu beobachten sein. Der Effekt tritt in der Tat eindeutig auf.

Die Bestätigung der obigen Vorstellungen wird durch Fortführung systematischer Messungen erfolgen, bei denen durch weitere 1.4-Disubstitutionsprodukte bzw. 1.3.5-Trisubstitutionsprodukte mit jeweils einheitlichen funktionellen Gruppen das in der Ringebene liegende Dipolmoment völlig ausgeschlossen werden soll. Wir möchten jedoch schon in den Ergebnissen der bisherigen Untersuchungen den eindeutigen Beweis für die Positivierung der Sechsringe und die Negativierung der Metalle sehen. Die entsprechende Frage soll auch bei den Fünfringen demnächst geklärt werden.

Wir danken der Fa. Henkel & Cie. GmbH. für ein Stipendium für den einen von uns (S. S.), sowie der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie für wertvolle Sachbeihilfen.

BESCHREIBUNG DER VERSUCHE

Alle Messungen erfolgten unter peinlichstem Luftausschluß bei 25° in verdünnten Benzol-Lösungen. Untersuchungen, die in Cyclohexan durchgeführt wurden, sind besonders vermerkt. Die Anordnung des Dipolmeters ²⁵⁾ sowie die Methode zur Bestimmung des Brechungsindexes und der Dichte wurden in unveränderter Form von E. Weiss ¹⁹⁾ übernommen.

Ebenso geht aus dieser Arbeit das Verfahren zur Auswertung nach HEDESTRAND hervor. Zur Abschätzung der Atompolarisation wurden die Verbindungen herangezogen, denen auf Grund röntgenographischer Messungen das Dipolmoment Null zugesprochen werden muß.

Reinigen der Substanzen: Alle Verbindungen wurden durch wiederholte Sublimation i. Hochvak. sorgfältig gereinigt. Tri-cyclopentadienyl-wismut ließ sich bei —78° aus Petroläther umkristallisieren.

Tab. 2. Meßergebnisse

Folgende Abkürzungen werden verwendet:

 x_2 = Molenbruch; $\Delta \epsilon_{12}$, $\Delta \rho_{12}$, $\Delta \rho_{n_{12}}^2$ = Änderungen der Dielektrizitätskonstanten, der Dichte und des Quadrates des Brechungsindexes; a, b, c = Steigungen der Dielektrizitätskonstanten-, Dichte- und n^2 -Konzentrationskurven; $P_{2\infty}$ = gesamte Molpolarisation der gelösten Substanz; DP_E = Elektronenpolarisation für Na-D-Linie; μ = Dipolmoment in Debye (D).

Lösungsmittel: Index 1; gelöste Substanz: Index 2; Lösung: Index 12.

Die angesetzte Atompolarisation ist in Prozenten der Elektronenpolarisation als Index von μ geschrieben. Die Fehlergrenze des Meßergebnisses ist durch das graphische Mittelungsverfahren bestimmt.

x_2	Δho_{12}	$\Delta \epsilon_{12}$	$\Delta_{\mathbf{D}} n_{12}^2$	
1. Di-cycle	opentadienyl-kobai	lt .		
0.002967	0.00218	0.003219	0.0018	a = 0.925
0.003004		0.003925	0.0018	b = 0.733
0.003664	0.00284	0.005103	0.0024	c = 0.588
0.004430	0.00313	0.004475	0.0024	$P_{2\infty} = 55.71$
0.005398	0.00419	0.004632	0.0030	DPE = 50.20
0.006167	0.00484	0.006123	0.0036	
0.007698	0.00611	0.007144	0.0048	
		$\mu_{5.1\%} = 0 \pm$	0.38 D	

²⁵⁾ Type DM 01 der Firma Wissenschaftl.-Techn.-Werkstätten, Dr. habil. K. Slevogt, Weilheim/Obb.

x_2	Δho_{12}	$\Delta \epsilon_{12}$	$\Delta_{\mathrm{D}}n_{12}^2$	
2. Di-cyclop	pentadienyl-nickel			
0.002706	0.00197	0.002277	0.0018	a=b=0.718
0.003257	0.00230	0.002355	0.0021	c = 0.663
0.003483	0.00256	0.002434	0.0024	$P_{2\infty} = 53.05$
0.005933	0.00409	0.003768	0.0036	DPE = 51.69
		$\mu_{2.6}\% = 0 \pm$	0.33 D	
3. Di-cyclop	pentadienyl-ruthen	ium		
0.002702	0.00353	0.002198	0.0018	a = 0.816
0.003072	0.00382	0.002277	0.0021	b = 1.275
0.004261	0.00549	0.003768	0.0033	c = 0.675
				$P_{2\infty} = 52.17$
		$\mu_{5.2}\% = 0 \pm$	0.23 D	DPE = 49.59
4. Di-cyclor	oentadienyl-osmiu			
	-		0.0020	1.050
0.003225	0.00757	0.0032	0.0030	a = 1.350
0.004042	0.00945	0.0042	0.0039	b = 2.290
0.008361	0.01895	0.008570	0.0078	$c = 0.925$ $P_{2\infty} = 59.24$
		$\mu_{1.6\%} = 0 \pm$	0.30 D	DPE = 52.55
		, , , , ,	0.30 B	
5. Di-cyclop	pentadienyl-chrom	1		
0.002327	0.00083	0.003219	0.0012	a = 0.925
0.004924	0.00265	0.004004	0.0022	b = c = 0.475
0.007956	0.00365	0.007379	0.0066	$P_{2\infty} = 61.2$ $DP_E = 53.2$
		$\mu_{15\%}=0\ \pm$	0.41 D	DI E - 33.2
6. Di-cyclop	ventadienyl-vanad	in		
0.003900	0.00323	0.003297	0.0030	a = 0.961
0.004695	0.00365	_	_	b = 0.788
0.004858	-	0.00470	0.0045	c = 0.927
0.008040	_	0.007751	. 0.0075	$P_{2\infty} = 51.84$
0.009710	_	_	0.0090	DPE = 50.92
0.009829	0.00301	_	0.0057	
		$\mu_{2.2}\% = 0 \pm$	0.34 D	
7. Di-cyclo	pentadienyl-berylli	ium		
0.003540	0.00072	0.030144	0.0000	a = 8.824
0.005349	0.00101	0.045137	0.0000	b = 0.250
0.005738	0.00103	0.048749	0.0001	c = 0.052
0.006581	0.00122	0.05809	0.0003	$P_{2\infty} = 166.38$
0.006649	_	0.060288	0.0003	DPE = 36.95
		$\mu_{15\%} = 2.46 \pm$	£ 0.06 D	
Messung	in Cyclohexan			
0.003950	0.00095	0.022608	0.00114	a = 5.875
0.004786	0.00097	0.027161	0.00198	b = 0.147
0.005548	0.00131	0.031086	0.00256	c = 0.441
0.0057504	0.00127	0.034933	0.00228	$P_{2\infty} = 156.27$
0.009034	0.00202	0.056834	0.00314	DPE = 46.51
		$\mu_{15\%} = 2.24 \pm$	ר מימא דו	

x ₂	Δho_{12}	$\Delta \epsilon_{12}$	$\Delta_{\mathrm{D}} n_{12}^2$	
8. Di-cycle	opentadienyl-magn	iesium		
0.003292	0.00086	0.001884	0.0000	a = 0.76
0.003363	0.00098	0.002120	0.0000	b = 0.32
0.003556	_	0.002905	0.0000	c = 0.00
0.004717	0.00126	0.003454	0.0000	$P_{2\infty} = 55.40$
0.005922	0.00089	0.004082	0.0000	DPE = 42.22
		$\mu_{31}\% = 0 \pm$	0.35 D	
· ·	opentadienyl-zinn			
	ng in Cyclohexan			
0.003219	0.00250	0.006673	0.0032	a = 2.159
0.003228	0.00308	0.006987	0.0037	b = 1.136
0.004208	0.00412	0.009185	0.0082	c = 0.955
				$P_{2\infty} = 84.66$ $DP_{E} = 57.25$
		$\mu_{15}\% = 0.96 \; \exists$	Ŀ 0.10 D	DI E - 57.25
10. Di-cycle	opentadienyl-blei			
Messun	ig in Cyclohexan			
0.002067	0.00317	0.006594	0.0029	a = 3.194
0.002989	0.00540	0.009499	0.0040	b = 1.750
0.003602	0.00634	0.01170	0.0049	c = 1.361
				$P_{2\infty} = 112.71$
		1.00	0.04.5	DPE = 68.36
		$\mu_{15\%} = 1.29 \pm $	Ŀ 0.04 D	
11. Tri-cycl	lopentadienyl-wis n	ıut		
0.009016	0.02201	0.039362	0.0138	a = 4.364
				b = 2.435
				c = 1.524
				$P_{2\infty} = 126.2$
		$\mu_{15}\% = 1.1$	17 D	$\mathbf{D}P_{\mathbf{E}} = 85.3$
12. Discycle	opentadienyl-rheni			
0.001732	0.00440	0.005581	0.0012	a = 3.043
0.001732	0.00478	0.003381	0.0012	a = 3.043 $b = 2.523$
0.003260	0.00802	0.01052	0.0023	c = 0.750
0.003900	0.00978	0.01232	0.0030	$P_{2\infty} = 76.03$
		1.17	0.24 D	$\mathbf{D}P\mathbf{E} = 42.01$
		$\mu_{15}\% = 1.17 \pm$		
	*	um-di-carbonyl-hyd		
0.001383	0.00335	0.03145	0.0018	a = 22.50
0.001749	0.00532	0.039627	0.0024	b = 2.64
0.002099 0.002525	0.00556 0.00715	0.045854 0.057616	0.0027 0.0030	c = 1.25
0.002323	0.00713	0.057010	0.0030	$P_{2\infty} = 377.47$ p $P_{\rm E} = 64.69$
		$\mu_{15}\% = 3.85 \pm$	Ŀ 0.09 D	DIE - 04.07
14. Bis-[cv	clopentadienyl-nic	kel-carbonyl]		
0.003527	0.00528	0.007941	0.0075	a = 3.14
0.003923	0.00579	0.012736	0.0073	b = 1.56
0.009361	0.01459	0.029325	0.0243	c = 2.40
				$P_{2\infty} = 102.19$
		_		DPE = 90.91
		$\mu_{13}\% = 0 \pm$	0.38 D	

<u>x₂</u>	$\Delta \rho_{12}$	$\Delta \epsilon_{12}$	$\Delta_{\mathbf{D}^{n_{12}^2}}$	
15. Tri-cyc	lopentadienyl-tri-n	ickel-di-carbonyl		
0.000188	0.00060	0.001415	0.0015	$ \begin{array}{rcl} a & = & 7.54 \\ b & = & 3.20 \\ c & = & 7.99 \\ P_{2\infty} & = & 181.92 \\ DP_{E} & = & 189.03 \end{array} $
		$\mu = 01$	D	D' E = 107.03
16. Cyelope	entadienyl-vanadin	-oxy-di-chlorid		
0.002833 0.003441 0.004699	0.00331 0.00394 0.00552	0.1002 0.1203 0.1625	0.0027 0.0027 0.0036	$a = 34.63$ $b = 1.05$ $c = 0.70$ $P_{2\infty} = 545.78$ $DPE = 47.00$
		$\mu_{15}\% = 4.91$	± 0.09 D	DIE - 47.00
17. Cyclope	entadienyl-chrom-l	benzol		
0.001755 0.002348 0.002463 0.003555 0.004955 0.005144	0.00097 0.00184 0.00197 0.00289 0.00401 0.00378	0.003768 0.003376 0.003376 0.004867 0.00675 0.010676	0.0021 0.0024 0.0024 0.0033 0.0048 0.0039	$a = 1.403$ $b = 0.775$ $c = 0.975$ $P_{2\infty} = 65.08$ $DP_{E} = 56.74$
		$\mu_{5.9}\%=0$ \pm	0.41 D	
18. Di-inde	nyl-eisen			
0.000440 0.002204 0.004565	0.00058 0.00281 0.00527	0.00079 0.003925 0.00785	0.0006 0.0036 0.0066	a = 1.71 b = 1.15 c = 1.45 $P_{2\infty} = 87.55$ $P_{E} = 83.10$
		$\mu_{5.4}\% = 0 \pm$	0.27 D	_
19. <i>Di-o-xy</i>	lol-chrom			
0.003109 0.003356 0.003609	0.00308 0.00348 0.00360	0.006437 0.00628 0.00691	0.0045 0.0045 0.0048	$a = 1.91$ $b = 1.32$ $c = 1.00$ $P_{2\infty} = 77.97$ $DP_{E} = 64.07$
		$\mu_{10.6}\%=0~\pm$	0.48 D	D1 E - 04.07
20. Di-m-x	ylol-chrom			
0.000822 0.002128 0.002324	0.00050 0.00249 0.00261	0.00141 0.003533 0.003925	0.0042 0.0027 0.0030	a = 1.69 b = 1.13 c = 1.28 $P_{2\infty} = 80.63$ $DP_{E} = 73.99$
		$\mu_{9.0\%}=0$ \pm	0.48 D	
21. <i>Di-p-xy</i>	olol-chrom			
0.002837 0.003724 0.004192	0.00283 0.00356 0.00383	0.004632 0.005731 0.006202	0.0017 0.0047 0.0051	$a = 1.54$ $b = 1.25$ $c = 0.95$ $P_{2\infty} = 74.59$ $P_E = 66.05$
		$\mu_{12.9\%} = 0 \pm 0$	0.35 D	

				
x ₂	Δho_{12}	$\Delta \epsilon_{12}$	$\Delta_{\mathrm{D}}n_{12}^{2}$	
22. Benzol-	chrom-tri-carbon)	vl		
0.002269	0.00245	0.079913	0.0024	a = 35.250
0.002898	0.00320	0.10260	0.0030	b = 1.088
0.003558	0.00383	0.12733	0.0036	c = 1.00
0.003570	0.00382	0.12584	0.0033	$P_{2\infty} = 557.61$
0.003747	0.00398	0.13369	0.0036	DPE = 54.08
	2,000,0	$\mu_{15\%} = 4.92$		D. D. C
Maccur	ig in Cyclohexan		_	
0.001197	0.00110	0.02543	0.0006	a = 21.50
0.001197	0.00110	0.02343	0.0000	$a = 21.50$ $b = 0.90$ $c = 0.50$ $P_{2\infty} = 435.32$ $DPE = 48.36$
		$\mu_{15}\% = 4.$	31 D	B1 E 40.50
23. Toluol-	chrom-tri-carbony	1		
0.002132	0.00147	0.082896	0.0018	a = 39.063
0.002503	0.00182	0.098439	0.0021	b = c = 0.816
0.002552	0.00212	0.099852	0.0021	$P_{2\infty} = 626.69$
0.003323	0.00260	0.130000	0.0027	$\mathbf{D}P\mathbf{E} = 64.19$
0.004051	0.00340	0.15849	0.0033	B1 E = 0>
0.004031	0.00540	$\mu_{15}\% = 5.20 =$		
24. o-Xvlol	-chrom-tri-carbon			
	0.00167		0.0018	a = 42.857
0.001575		0.066176	0.0018	
0.001957	0.00196	0.082975		
0.002379	0.00249	0.10315	0.0027	
0.003588	0.00368	0.15527	0.0036	$P_{2\infty} = 681.15$ $DP_E = 67.36$
		$\mu_{15\%} = 5.41$	Ŀ 0.05 D	2-2
25. m-Xylo	l-chrom-tri-carbo	nyl		
0.001714	0.00183	0.071042	0.0018	a = 41.66
0.002343	0.00235	0.097183	0.0024	b = 1.00
0.003124	0.00313	0.13416	0.0030	c = 100
0.003228	0.00320	0.13557	0.0030	$P_{2\infty} = 664.01$
				$\mathbf{D}P\mathbf{E} = 66.13$
		$\mu_{15}\% = 5.37 =$	E 0.02 D	
26. p-Xylol	-chrom-tri-carbon	y l		
0.001495	0.00161	0.06280	0.0018	a = 42.105
0.002098	0.00208	0.087999	0.0024	b = 0.988
0.002539	0.00256	0.10817	0.0027	c = 1.088
0.003140	0.00310	0.13369	0.0033	$P_{2\infty} = 670.93$
		$\mu_{15\%} = 5.39 \pm$	- 0.05 D	DPE = 67.81
27 Masitul	lan-ahram-tri-aarh	,,	_ 0.03 15	
-	len-chrom-tri-carb	· ·	0.0000	_ 44.444
0.001479	0.00071	0.065626	0.0009	a = 44.444
0.002240	0.00148	0.10142	0.0018	b = 0.700
0.002734	0.00196	0.12607	0.0024	c = 0.853
0.003161	0.00236	0.14059	0.0027	$P_{2\infty} = 718.87$
0.003425	0.00243	0.15292	0.0030	DPE = 77.68
		$\mu_{15}\% = 5.56$	Ŀ 0.06 D	
Chemische I	Berichte Jahra, 92			61

x ₂	Δho_{12}	$\Delta \epsilon_{12}$	$\Delta_{\mathbf{D}}n_{12}^2$	
28. Hexami	ethylbenzol-chrom	-tri-carbonyl		
0.001627	0.00090	0.090668	0.0015	a = 55.65
0.001661	0.00078	0.092080	0.0012	b = 0.58
0.002312	0.00158	0.12913	0.0024	c = 0.93
				$P_{2\infty} = 901.49$
		$\mu_{15}\% = 6.22 \ \pm$	0.02 D	DPE = 97.45
29. Nanhthi	alin-chrom-tri-cari	hanvl		
0.000775	0.00064	0.045059	0.0018	a = 58.928
0.000773	0.00179	0.077794	0.0018	$ \begin{array}{rcl} a & = & 58.928 \\ b & = & 1.225 \end{array} $
0.001332	0.00173	0.087841	0.0021	c = 1.225
0.002442	0.00752	0.14460	0.0048	$P_{2\infty} = 961.97$
••••				DPE = 124.25
		$\mu_{15\%} = 6.33 \pm$	₋ 0.03 D	
30. Phenol-	chrom-tri-carbony	1		
0.002179	0.00161	0.084466	0.0024	a = 38.33
0.002281	0.00198	0.085016	0.0027	b = 0.88
0.003223	0.00307	0.12434	0.0033	c = 1.07
				$P_{2\infty} = 614.63$
				DPE = 66.68
		$\mu_{15}\% = 5.13 \pm$	0.07 D	
31. Anisol-c	chrom-tri-carbony	I		
0.001509	0.00179	0.06013	0.0015	a = 40.139
0.002403	0.00280	0.09679	0.0024	b = 1.153
0.003128	0.00387	0.12544	0.0033	c = 1.014
0.003490	0.00403	0.1398	0.0036	$P_{2\infty} = 637.68$
		$\mu_{15\%} = 5.26 \pm$	0.03 D	DPE = 62.41
32. Anilin-c	hrom-tri-carbonyi	,		
0.001167	0.00140	0.004898	0.0018	a = 42.15
0.001758	0.00212	0.073555	0.0027	b = 1.14
0.001871	0.00221	0.079364	0.0030	c = 1.43
0.003497	0.00405	0.14813	0.0051	$P_{2\infty} = 683.87$
		$\mu_{15}\% = 5.40 \pm$	- 0.05 D	DPE = 84.93
33 Fluorba	nzol-chrom-tri-cai	1 -270		
0.001460	0.00194	·	0.0000	12 (00
0.001460	0.00194	0.046394 0.073633	0.0009 0.0015	a = 32.609 b = 1.196
0.002678	0.00207	0.085644	0.0013	c = 0.689
0.002676	0.00556	0.15119	0.0013	$P_{2\infty} = 521.33$
5.50,552	0.0000			DPE = 51.91
		$\mu_{15}\% = 4.75 \; \exists$	∈ 0.03 D	
34. Benzoes	säuremethylester-o	chrom-tri-carbonyl		
0.001533	0.00214	0.044824	0.0012	a = 29.55
0.001650	0.00125	0.048199	0.0015	b = 1.35
0.002576	0.00332	0.07701	0.0024	c = 1.05
0.002832	0.00327	0.084309	0.0042	$P_{2\infty} = 485.71$
0.002953	0.00384	0.087449	0.0027	$\mathbf{D}P_{\mathbf{E}} = 66.44$
		$\mu_{15}\% = 4.47 \pm$	Ŀ 0.03 D	